

Description and Purpose

A fiber roll (also known as wattles or logs) consists of straw, coir, curled wood fiber, or other biodegradable materials bound into a tight tubular roll wrapped by plastic netting, which can be photodegradable, or natural fiber, such as jute, cotton, or sisal. Additionally, gravel core fiber rolls are available, which contain an imbedded ballast material such as gravel or sand for additional weight when staking the rolls are not feasible (such as use as inlet protection). When fiber rolls are placed at the toe and on the face of slopes along the contours, they intercept runoff, reduce its flow velocity, release the runoff as sheet flow, and provide removal of sediment from the runoff (through sedimentation). By interrupting the length of a slope, fiber rolls can also reduce sheet and rill erosion until vegetation is established.

Suitable Applications

Fiber rolls may be suitable:

- Along the toe, top, face, and at grade breaks of exposed and erodible slopes to shorten slope length and spread runoff as sheet flow.
- At the end of a downward slope where it transitions to a steeper slope.
- Along the perimeter of a project.
- As check dams in unlined ditches with minimal grade.
- Down-slope of exposed soil areas.

Categories

EC Erosion Control

SE Sediment Control

TC Tracking Control

WE Wind Erosion Control

NS Non-Stormwater
Management Control

WM Waste Management and Materials Pollution Control

Legend:

☑ Primary Category

☒ Secondary Category

Targeted Constituents

Sediment

 \checkmark

 $\overline{\mathbf{A}}$

Nutrients

Trash

Metals

Bacteria

Oil and Grease

Organics

Potential Alternatives

SE-1 Silt Fence

SE-6 Gravel Bag Berm

SE-8 Sandbag Barrier

SE-12 Manufactured Linear Sediment Controls

SE-14 Biofilter Bags

If User/Subscriber modifies this fact sheet in any way, the CASQA name/logo and footer below must be removed from each page and not appear on the modified version.

- At operational storm drains as a form of inlet protection.
- Around temporary stockpiles.

Limitations

- Fiber rolls should be used in conjunction with erosion control, such as hydroseed, RECPs, etc.
- Only biodegradable fiber rolls containing no plastic can remain on a site applying for a
 Notice of Termination due to plastic pollution and wildlife concerns (State Water Board,
 2016). Fiber rolls containing plastic that are used on a site must be disposed of for final
 stabilization.
- Fiber rolls are not effective unless trenched in and staked. If not properly staked and trenched in, fiber rolls will not work as intended and could be transported by high flows.
- Not intended for use in high flow situations (i.e., for concentrated flows).
- Difficult to move once saturated.
- Fiber rolls have a limited sediment capture zone.
- Fiber rolls should not be used on slopes subject to creep, slumping, or landslide.
- Rolls typically function for 12-24 months, depending upon local conditions and roll material.

Implementation

Fiber Roll Materials

- Fiber rolls should be prefabricated.
- Fiber rolls may come manufactured containing polyacrylamide (PAM), a flocculating agent within the roll. Fiber rolls impregnated with PAM provide additional sediment removal capabilities and should be used in areas with fine, clayey or silty soils to provide additional sediment removal capabilities. Monitoring may be required for these installations.
- Fiber rolls are made from weed-free rice straw, flax, curled wood fiber, or coir bound into a tight tubular roll by netting or natural fiber (see *Limitations* above regarding plastic netting).
- Typical fiber rolls vary in diameter from 6 in. to 20 in. Larger diameter rolls are available as well. The larger the roll, the higher the sediment retention capacity.
- Typical fiber rolls lengths are 4, 10, 20 and 25 ft., although other lengths are likely available.

Installation

- Locate fiber rolls on level contours spaced as follows:
 - Slope inclination of 4:1 (H:V) or flatter: Fiber rolls should be placed at a maximum interval of 20 ft.

- Slope inclination between 4:1 and 2:1 (H:V): Fiber Rolls should be placed at a maximum interval of 15 ft. (a closer spacing is more effective).

- Slope inclination 2:1 (H:V) or greater: Fiber Rolls should be placed at a maximum interval of 10 ft. (a closer spacing is more effective).
- Prepare the slope before beginning installation.
- Dig small trenches across the slope on the contour. The trench depth should be ¼ to 1/3 of the thickness of the roll, and the width should equal the roll diameter, in order to provide area to backfill the trench.
- It is critical that rolls are installed perpendicular to water movement, and parallel to the slope contour.
- Start building trenches and installing rolls from the bottom of the slope and work up.
- It is recommended that pilot holes be driven through the fiber roll. Use a straight bar to drive holes through the roll and into the soil for the wooden stakes.
- Turn the ends of the fiber roll up slope to prevent runoff from going around the roll.
- Stake fiber rolls into the trench.
 - Drive stakes at the end of each fiber roll and spaced 4 ft maximum on center.
 - Use wood stakes with a nominal classification of 0.75 by 0.75 in. and minimum length of 24 in.
- If more than one fiber roll is placed in a row, the rolls should be overlapped, not abutted.
- See typical fiber roll installation details at the end of this fact sheet.

Removal

- Fiber rolls can be left in place or removed depending on the type of fiber roll and application (temporary vs. permanent installation). Fiber rolls encased with plastic netting or containing any plastic material will need to be removed from the site for final stabilization. Fiber rolls used in a permanent application are to be encased with a non-plastic material and are left in place. Removal of a fiber roll used in a permanent application can result in greater disturbance; therefore, during the BMP planning phase, the areas where fiber rolls will be used on final slopes, only fiber rolls wrapped in non-plastic material should be selected.
- Temporary installations should only be removed when up gradient areas are stabilized per General Permit requirements, and/or pollutant sources no longer present a hazard. But they should also be removed before vegetation becomes too mature so that the removal process does not disturb more soil and vegetation than is necessary.

Costs

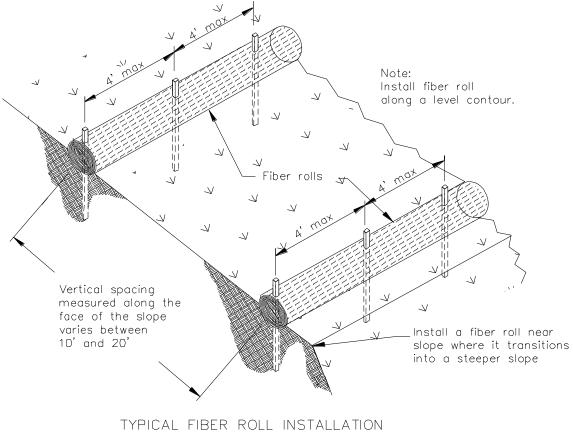
Material costs for straw fiber rolls range from \$26 - \$38 per 25-ft. roll¹ and curled wood fiber rolls range from \$30 - \$40 per roll².

Material costs for PAM impregnated fiber rolls range between \$9.00-\$12.00 per linear foot, based upon vendor research¹.

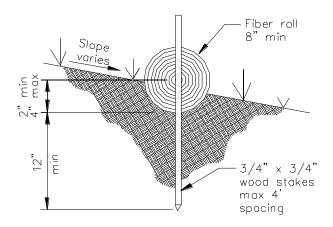
Inspection and Maintenance

- BMPs must be inspected in accordance with General Permit requirements for the associated project type and risk level. It is recommended that at a minimum, BMPs be inspected weekly, prior to forecasted rain events, daily during extended rain events, and after the conclusion of rain events.
- Repair or replace split, torn, unraveling, or slumping fiber rolls.
- If the fiber roll is used as a sediment capture device, or as an erosion control device to maintain sheet flows, sediment that accumulates in the BMP should be periodically removed in order to maintain BMP effectiveness. Sediment should be removed when sediment accumulation reaches one-third the designated sediment storage depth.
- If fiber rolls are used for erosion control, such as in a check dam, sediment removal should not be required as long as the system continues to control the grade. Sediment control BMPs will likely be required in conjunction with this type of application.
- Repair any rills or gullies promptly.

References


General Construction – Frequently Asked Questions, Storm Water Program website, State Water Resources Control Board, 2009 updated in 2016. Available online at: http://www.waterboards.ca.gov/water_issues/programs/stormwater/gen_const_faq.shtml.

Stormwater Quality Handbooks - Construction Site Best Management Practices (BMPs) Manual, State of California Department of Transportation (Caltrans), March 2003.


Erosion and Sediment Control Manual, Oregon Department of Environmental Quality, February 2005.

¹ Adjusted for inflation (2016 dollars) by Tetra Tech, Inc.

² Costs estimated based on vendor query by Tetra Tech, Inc. 2016.

TYPICAL FIBER ROLL INSTALLATION
N.T.S.

ENTRENCHMENT DETAIL N.T.S.